Skip to main content

An IBM SVC Experience

The company i worked for is running IBM System Storage SAN Volume Controller (SVC) to hold some of the media content. SATA disks are attached to the server via fiber channel protocol. One night i saw input output error on one of the disks in a linux box. Then i asked for storage admin to analyze it. When creating a volume on the SVC there is an option for thin provisioning. It allocates disk blocks to the volume as needed. Storage Admin realized that disk pool for thin provisioning was full. Then he gives extra disks to the pool and free up some space. But this was not happened at once. Storage admin had to repair the disk that gave IO error. Because the disk had fallen into offline status. After a long repair process disk status changed into online. It was not realized by the linux server even after rescan commands. The server had to be rebooted. After all these operations disk was ready.

Comments

Popular posts from this blog

Creating Multiple VLANs over Bonding Interfaces with Proper Routing on a Centos Linux Host

In this post, I am going to explain configuring multiple VLANs on a bond interface. First and foremost, I would like to describe the environment and give details of the infrastructure. The server has 4 Ethernet links to a layer 3 switch with names: enp3s0f0, enp3s0f1, enp4s0f0, enp4s0f1 There are two bond interfaces both configured as active-backup bond0, bond1 enp4s0f0 and enp4s0f1 interfaces are bonded as bond0. Bond0 is for making ssh connections and management only so corresponding switch ports are not configured in trunk mode. enp3s0f0 and enp3s0f1 interfaces are bonded as bond1. Bond1 is for data and corresponding switch ports are configured in trunk mode. Bond0 is the default gateway for the server and has IP address 10.1.10.11 Bond1 has three subinterfaces with VLAN 4, 36, 41. IP addresses are 10.1.3.11, 10.1.35.11, 10.1.40.11 respectively. Proper communication with other servers on the network we should use routing tables. There are three

3 Node (Master Slave Slave) Redis Cluster with Sentinel

It is possible to make your Redis cluster Fault Tolerant and Highly Available by building a replica set and then monitor these nodes using sentinel for automatic failover. I am going to give an example setup to explain it. The structure is built with three nodes running one as a master and two as slaves. Master Node: (Centos 7.2) 192.168.1.11 Slave1 Node: (Centos 7.2) 192.168.1.12 Slave2 Node: (Centos 7.2) 192.168.1.13 Edit System settings on each node: /etc/sysctl.conf Disable transparent hugepage (transparent_hugepage=never) on each node: /etc/default/grub Apply grub config and reboot each node: Master Node: /etc/redis/6379.conf Slave1 Node: /etc/redis/6379.conf Slave2 Node: /etc/redis/6379.conf Master Node: /etc/redis/sentinel.conf Slave1 Node: /etc/redis/sentinel.conf Slave2 Node: /etc/redis/sentinel.conf Each Node: /etc/systemd/system/multi-user.target.wants/redis-server.service Each Node: /etc/